
Peruvian Computing Society (SPC)
School of Computer Science

Sillabus 2023-I

1. COURSE
CS113. Computer Science II (Mandatory)

2. GENERAL INFORMATION
2.1 Course : CS113. Computer Science II
2.2 Semester : 3er Semestre.
2.3 Credits : 4
2.4 Horas : 2 HT; 4 HP;

2.5 Duration of the period : 16 weeks
2.6 Type of course : Mandatory
2.7 Learning modality : Blended
2.8 Prerrequisites : CS112. Computer Science I. (2nd Sem) CS112. Computer Science I. (2nd Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
This is the third course in the sequence of introductory courses in computer science. This course is intended to cover
Concepts indicated by the Computing Curriculum IEEE (c) -ACM 2001, under the functional-first approach. The object-
oriented paradigm allows us to combat complexity by making models from abstractions of the problem elements and using
techniques such as encapsulation, modularity, polymorphism and inheritance. The Dominion of these topics will enable
participants to provide computational solutions to design problems simple of the real world.

5. GOALS

• Introduce the student in the fundaments of the paradigm of object orientation, allowing the assimilation of concepts
necessary to develop an information system

6. COMPETENCES

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify
solutions. (Usage)

3) Communicate effectively in a variety of professional contexts. (Usage)

5) Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
(Usage)

7. TOPICS

1

Unit 1: Fundamental Programming Concepts (5)
Competences Expected:
Topics Learning Outcomes

• Basic syntax and semantics of a higher-level language

• Variables and primitive data types (e.g., numbers,
characters, Booleans)

• Expressions and assingments

• Simple I/O including file I/O

• Conditional and iterative control structures

• Functions and parameter passing

• The concept of recursion

• Analyze and explain the behavior of simple programs
involving the fundamental programming constructs
variables, expressions, assignments, I/O, control con-
structs, functions, parameter passing, and recursion.
[Usage]

• Identify and describe uses of primitive data types
[Usage]

• Write programs that use primitive data types [Usage]

• Modify and expand short programs that use stan-
dard conditional and iterative control structures and
functions [Usage]

• Design, implement, test, and debug a program that
uses each of the following fundamental programming
constructs: basic computation, simple I/O, standard
conditional and iterative structures, the definition of
functions, and parameter passing [Usage]

• Write a program that uses file I/O to provide persis-
tence across multiple executions [Usage]

• Choose appropriate conditional and iteration con-
structs for a given programming task [Usage]

• Describe the concept of recursion and give examples
of its use [Usage]

• Identify the base case and the general case of a
recursively-defined problem [Usage]

Readings : [Str13], [DVandervoorde1], [StanleyB13]

2

Unit 2: Object-Oriented Programming (7)
Competences Expected:
Topics Learning Outcomes

• Object-oriented design

– Decomposition into objects carrying state and
having behavior

– Class-hierarchy design for modeling

• Definition of classes: fields, methods, and construc-
tors

• Subclasses, inheritance, and method overriding

• Dynamic dispatch: definition of method-call

• Subtyping

– Subtype polymorphism; implicit upcasts in
typed languages

– Notion of behavioral replacement: subtypes
acting like supertypes

– Relationship between subtyping and inheri-
tance

• Object-oriented idioms for encapsulation

– Privacy and visibility of class members

– Interfaces revealing only method signatures

– Abstract base classes

• Using collection classes, iterators, and other common
library components

• Design and implement a class [Usage]

• Use subclassing to design simple class hierarchies
that allow code to be reused for distinct subclasses
[Usage]

• Correctly reason about control flow in a program us-
ing dynamic dispatch [Usage]

• Compare and contrast (1) the procedural/functional
approach—defining a function for each operation
with the function body providing a case for
each data variant—and (2) the object-oriented ap-
proach—defining a class for each data variant with
the class definition providing a method for each op-
eration Understand both as defining a matrix of op-
erations and variants [Usage]

• Explain the relationship between object-oriented in-
heritance (code-sharing and overriding) and subtyp-
ing (the idea of a subtype being usable in a context
that expects the supertype) [Usage]

• Use object-oriented encapsulation mechanisms such
as interfaces and private members [Usage]

• Define and use iterators and other operations on ag-
gregates, including operations that take functions as
arguments, in multiple programming languages, se-
lecting the most natural idioms for each language
[Usage]

Readings : [Str13]

3

Unit 3: Algorithms and Design (5)
Competences Expected:
Topics Learning Outcomes

• The concept and properties of algorithms

– Informal comparison of algorithm efficiency
(e.g., operation counts)

• The role of algorithms in the problem-solving process

• Problem-solving strategies

– Iterative and recursive mathematical functions

– Iterative and recursive traversal of data struc-
tures

– Divide-and-conquer strategies

• Fundamental design concepts and principles

– Abstraction

– Program decomposition

– Encapsulation and information hiding

– Separation of behaivor and implementation

• Discuss the importance of algorithms in the problem-
solving process [Usage]

• Discuss how a problem may be solved by multiple
algorithms, each with different properties [Usage]

• Create algorithms for solving simple problems [Us-
age]

• Use a programming language to implement, test, and
debug algorithms for solving simple problems [Usage]

• Implement, test, and debug simple recursive func-
tions and procedures [Usage]

• Determine whether a recursive or iterative solution
is most appropriate for a problem [Usage]

• Implement a divide-and-conquer algorithm for solv-
ing a problem [Usage]

• Apply the techniques of decomposition to break a
program into smaller pieces [Usage]

• Identify the data components and behaviors of mul-
tiple abstract data types [Usage]

• Implement a coherent abstract data type, with loose
coupling between components and behaviors [Usage]

• Identify the relative strengths and weaknesses among
multiple designs or implementations for a problem
[Usage]

Readings : [Str13], [Weert16], [StanleyB13]

4

Unit 4: Basic Analysis (3)
Competences Expected:
Topics Learning Outcomes

• Differences among best, expected, and worst case be-
haviors of an algorithm

• Asymptotic analysis of upper and expected complex-
ity bounds

• Big O notation: formal definition

• Complexity classes, such as constant, logarithmic,
linear, quadratic, and exponential

• Empirical measurements of performance

• Time and space trade-offs in algorithms

• Big O notation: use

• Little o, big omega and big theta notation

• Recurrence relations

• Analysis of iterative and recursive algorithms

• Master Theorem and Recursion Trees

• Explain what is meant by “best”, “expected”, and
“worst” case behavior of an algorithm [Usage]

• In the context of specific algorithms, identify the
characteristics of data and/or other conditions or as-
sumptions that lead to different behaviors [Usage]

• Determine informally the time and space complexity
of different algorithms [Usage]

• State the formal definition of big O [Usage]

• List and contrast standard complexity classes [Us-
age]

• Perform empirical studies to validate hypotheses
about runtime stemming from mathematical anal-
ysis Run algorithms on input of various sizes and
compare performance [Usage]

• Give examples that illustrate time-space trade-offs
of algorithms [Usage]

• Use big O notation formally to give asymptotic up-
per bounds on time and space complexity of algo-
rithms [Usage]

• Use big O notation formally to give expected case
bounds on time complexity of algorithms [Usage]

• Explain the use of big omega, big theta, and little o
notation to describe the amount of work done by an
algorithm [Usage]

• Use recurrence relations to determine the time com-
plexity of recursively defined algorithms [Usage]

• Solve elementary recurrence relations, eg, using some
form of a Master Theorem [Usage]

Readings : [Str13]

5

Unit 5: Basic Type Systems (5)
Competences Expected:
Topics Learning Outcomes

• A type as a set of values together with a set of op-
erations

– Primitive types (e.g., numbers, Booleans)

– Compound types built from other types (e.g.,
records, unions, arrays, lists, functions, refer-
ences)

• Association of types to variables, arguments, results,
and fields

• Type safety and errors caused by using values incon-
sistently given their intended types

• Goals and limitations of static typing

– Eliminating some classes of errors without run-
ning the program

– Undecidability means static analysis must con-
servatively approximate program behavior

• Generic types (parametric polymorphism)

– Definition

– Use for generic libraries such as collections

– Comparison with ad hoc polymorphism (over-
loading) and subtype polymorphism

• Complementary benefits of static and dynamic typ-
ing

– Errors early vs. errors late/avoided

– Enforce invariants during code development
and code maintenance vs. postpone typing de-
cisions while prototyping and conveniently al-
low flexible coding patterns such as heteroge-
neous collections

– Avoid misuse of code vs. allow more code reuse

– Detect incomplete programs vs. allow incom-
plete programs to run

• For both a primitive and a compound type, infor-
mally describe the values that have that type [Usage]

• For a language with a static type system, describe
the operations that are forbidden statically, such as
passing the wrong type of value to a function or
method [Usage]

• Describe examples of program errors detected by a
type system [Usage]

• For multiple programming languages, identify pro-
gram properties checked statically and program
properties checked dynamically [Usage]

• Give an example program that does not type-check
in a particular language and yet would have no error
if run [Usage]

• Use types and type-error messages to write and de-
bug programs [Usage]

• Explain how typing rules define the set of operations
that are legal for a type [Usage]

• Write down the type rules governing the use of a
particular compound type [Usage]

• Explain why undecidability requires type systems to
conservatively approximate program behavior [Us-
age]

• Define and use program pieces (such as functions,
classes, methods) that use generic types, including
for collections [Usage]

• Discuss the differences among generics, subtyping,
and overloading [Usage]

• Explain multiple benefits and limitations of static
typing in writing, maintaining, and debugging soft-
ware [Usage]

Readings : [Str13]

6

Unit 6: Fundamental Data Structures and Algorithms (3)
Competences Expected:
Topics Learning Outcomes

• Simple numerical algorithms, such as computing the
average of a list of numbers, finding the min, max,

• Sequential and binary search algorithms

• Worst case quadratic sorting algorithms (selection,
insertion)

• Worst or average case O(N log N) sorting algorithms
(quicksort, heapsort, mergesort)

• Hash tables, including strategies for avoiding and re-
solving collisions

• Binary search trees

– Common operations on binary search trees such
as select min, max, insert, delete, iterate over
tree

• Graphs and graph algorithms

– Representations of graphs (e.g., adjacency list,
adjacency matrix)

– Depth- and breadth-first traversals

• Heaps

• Graphs and graph algorithms

– Maximum and minimum cut problem

– Local search

• Pattern matching and string/text algorithms (e.g.,
substring matching, regular expression matching,
longest common subsequence algorithms)

• Implement basic numerical algorithms [Usage]

• Implement simple search algorithms and explain the
differences in their time complexities [Usage]

• Be able to implement common quadratic and O(N
log N) sorting algorithms [Usage]

• Describe the implementation of hash tables, includ-
ing collision avoidance and resolution [Usage]

• Discuss the runtime and memory efficiency of prin-
cipal algorithms for sorting, searching, and hashing
[Usage]

• Discuss factors other than computational efficiency
that influence the choice of algorithms, such as
programming time, maintainability, and the use of
application-specific patterns in the input data [Us-
age]

• Explain how tree balance affects the efficiency of var-
ious binary search tree operations [Usage]

• Solve problems using fundamental graph algorithms,
including depth-first and breadth-first search [Usage]

• Demonstrate the ability to evaluate algorithms, to
select from a range of possible options, to provide
justification for that selection, and to implement the
algorithm in a particular context [Usage]

• Describe the heap property and the use of heaps as
an implementation of priority queues [Usage]

• Solve problems using graph algorithms, including
single-source and all-pairs shortest paths, and at
least one minimum spanning tree algorithm [Usage]

• Trace and/or implement a string-matching algo-
rithm [Usage]

Readings : [Str13], [PPai18]

7

Unit 7: Event-Driven and Reactive Programming (2)
Competences Expected:
Topics Learning Outcomes

• Events and event handlers

• Canonical uses such as GUIs, mobile devices, robots,
servers

• Using a reactive framework

– Defining event handlers/listeners

– Main event loop not under event-handler-
writer’s control

• Externally-generated events and program-generated
events

• Separation of model, view, and controller

• Write event handlers for use in reactive systems, such
as GUIs [Usage]

• Explain why an event-driven programming style is
natural in domains where programs react to external
events [Usage]

• Describe an interactive system in terms of a model,
a view, and a controller [Usage]

Readings : [Str13], [Williams11]

Unit 8: Graphs and Trees (7)
Competences Expected:
Topics Learning Outcomes

• Trees

– Properties

– Traversal strategies

• Undirected graphs

• Directed graphs

• Weighted graphs

• Spanning trees/forests

• Graph isomorphism

• Illustrate by example the basic terminology of graph
theory, and some of the properties and special cases
of each type of graph/tree [Usage]

• Demonstrate different traversal methods for trees
and graphs, including pre, post, and in-order traver-
sal of trees [Usage]

• Model a variety of real-world problems in computer
science using appropriate forms of graphs and trees,
such as representing a network topology or the orga-
nization of a hierarchical file system [Usage]

• Show how concepts from graphs and trees appear in
data structures, algorithms, proof techniques (struc-
tural induction), and counting [Usage]

• Explain how to construct a spanning tree of a graph
[Usage]

• Determine if two graphs are isomorphic [Usage]

Readings : [Nak13]

8

Unit 9: Software Design (6)
Competences Expected:
Topics Learning Outcomes

• System design principles: levels of abstraction (ar-
chitectural design and detailed design), separation
of concerns, information hiding, coupling and cohe-
sion , re-use of standard structures

• Design Paradigms such as structured design (top-
down functional decomposition), object-oriented
analysis and design, event driven design, component-
level design, data-structured centered, aspect ori-
ented, function oriented, service oriented

• Structural and behavioral models of software designs

• Design patterns

• Relationships between requirements and designs:
transformation of models, design of contracts, invari-
ants

• Software architecture concepts and standard archi-
tectures (e.g. client-server, n-layer, transform cen-
tered, pipes-and-filters)

• The use of component desing: component selec-
tion, design, adaptation and assembly of compo-
nents, component and patterns, components and ob-
jects (for example, building a GUI using a standar
widget set)

• Refactoring designs using design patterns

• Internal design qualities, and models for them: effi-
ciency and performance, redundacy and fault toler-
ance, traceability of requeriments

• Measurement and analysis of design quality

• Tradeoffs between different aspects of quality

• Application frameworks

• Middleware: the object-oriented paradigm within
middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems

• Principles of secure design and coding

– Principle of least privilege

– Principle of fail-safe defaults

– Principle of psychological acceptability

• Articulate design principles including separation of
concerns, information hiding, coupling and cohesion,
and encapsulation [Usage]

• Use a design paradigm to design a simple software
system, and explain how system design principles
have been applied in this design [Usage]

• Construct models of the design of a simple software
system that are appropriate for the paradigm used
to design it [Usage]

• Within the context of a single design paradigm, de-
scribe one or more design patterns that could be ap-
plicable to the design of a simple software system
[Usage]

• For a simple system suitable for a given scenario,
discuss and select an appropriate design paradigm
[Usage]

• Create appropriate models for the structure and be-
havior of software products from their requirements
specifications [Usage]

• Explain the relationships between the requirements
for a software product and its design, using appro-
priate models [Usage]

• For the design of a simple software system within
the context of a single design paradigm, describe the
software architecture of that system [Usage]

• Given a high-level design, identify the software ar-
chitecture by differentiating among common soft-
ware architectures such as 3-tier, pipe-and-filter, and
client-server [Usage]

• Investigate the impact of software architectures se-
lection on the design of a simple system [Usage]

• Apply simple examples of patterns in a software de-
sign [Usage]

• Describe a form of refactoring and discuss when it
may be applicable [Usage]

• Select suitable components for use in the design of a
software product [Usage]

• Explain how suitable components might need to be
adapted for use in the design of a software product
[Usage]

• Design a contract for a typical small software com-
ponent for use in a given system [Usage]

• Discuss and select appropriate software architecture
for a simple system suitable for a given scenario [Us-
age]

• Apply models for internal and external qualities in
designing software components to achieve an accept-
able tradeoff between conflicting quality aspects [Us-
age]

• Analyze a software design from the perspective of a
significant internal quality attribute [Usage]

• Analyze a software design from the perspective of a
significant external quality attribute [Usage]

• Explain the role of objects in middleware systems
and the relationship with components [Usage]

• Apply component-oriented approaches to the design
of a range of software, such as using components for
concurrency and transactions, for reliable commu-
nication services, for database interaction including
services for remote query and database management,
or for secure communication and access [Usage]

• Refactor an existing software implementation to im-
prove some aspect of its design [Usage]

• State and apply the principles of least privilege and
fail-safe defaults [Usage]

Readings : [Str13]

9

Unit 10: Requirements Engineering (1)
Competences Expected:
Topics Learning Outcomes

• Describing functional requirements using, for exam-
ple, use cases or users stories

• Properties of requirements including consistency, va-
lidity, completeness, and feasibility

• Software requirements elicitation

• Describing system data using, for example, class di-
agrams or entity-relationship diagrams

• Non functional requirements and their relationship
to software quality

• Evaluation and use of requirements specifications

• Requirements analysis modeling techniques

• Acceptability of certainty / uncertainty considera-
tions regarding software / system behavior

• Prototyping

• Basic concepts of formal requirements specification

• Requirements specification

• Requirements validation

• Requirements tracing

• List the key components of a use case or similar de-
scription of some behavior that is required for a sys-
tem [Usage]

• Describe how the requirements engineering process
supports the elicitation and validation of behavioral
requirements [Usage]

• Interpret a given requirements model for a simple
software system [Usage]

• Describe the fundamental challenges of and common
techniques used for requirements elicitation [Usage]

• List the key components of a data model (eg, class
diagrams or ER diagrams) [Usage]

• Identify both functional and non-functional require-
ments in a given requirements specification for a soft-
ware system [Usage]

• Conduct a review of a set of software requirements
to determine the quality of the requirements with
respect to the characteristics of good requirements
[Usage]

• Apply key elements and common methods for elicita-
tion and analysis to produce a set of software require-
ments for a medium-sized software system [Usage]

• Compare the plan-driven and agile approaches to re-
quirements specification and validation and describe
the benefits and risks associated with each [Usage]

• Use a common, non-formal method to model and
specify the requirements for a medium-size software
system [Usage]

• Translate into natural language a software require-
ments specification (eg, a software component con-
tract) written in a formal specification language [Us-
age]

• Create a prototype of a software system to mitigate
risk in requirements [Usage]

• Differentiate between forward and backward tracing
and explain their roles in the requirements validation
process [Usage]

Readings : [Str13]

8. WORKPLAN
8.1 Methodology
Individual and team participation is encouraged to present their ideas, motivating them with additional points in the

different stages of the course evaluation.
8.2 Theory Sessions
The theory sessions are held in master classes with activities including active learning and roleplay to allow students

10

to internalize the concepts.

8.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through

problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM
********* EVALUATION MISSING ********

10. BASIC BIBLIOGRAPHY

[Nak13] S. Nakariakov. The Boost C++ Libraries: Generic Programming. CreateSpace Independent Publishing Platforml,
2013.

[Str13] B Stroustrup. The C++ Programming Language, 4th edition. Addison-Wesley, 2013.

11

