
San Pablo Catholic University (UCSP)
Undergraduate Program in

Computer Science
SILABO

CS311. Competitive Programming (Mandatory)

2023-II
1. General information
1.1 School : Ciencia de la Computación
1.2 Course : CS311. Competitive Programming
1.3 Semester : 6to Semestre.
1.4 Prerrequisites : CS212. Algorithm Analysis and Design. (5th Sem)
1.5 Type of course : Mandatory
1.6 Learning modality : Face to face
1.7 Horas : 2 HT; 4 HP;
1.8 Credits : 4
1.9 Plan : Plan Curricular 2016

2. Professors
Lecturer

• Juan Carlos Gutiérrez Cáceres <jcgutierrezc@ucsp.edu.pe>
– PhD in Ciencia de la Computación, Universidad Nacional de San Agust́ın, Perú, 2013.
– MSc in Ciencia de la Computación, ICMC-USP, Brasil, 2003.

3. Course foundation
Competitive Programming combines problem-solving challenges with the fun of competing with others. It teaches
participants to think faster and develop problem-solving skills that are in high demand in the industry. This course will
teach you to solve algorithmic problems quickly by combining theory of algorithms and data structures with practice
solving problems.

4. Summary

1. Introduction 2. Data structure 3. Algorithmic Design Paradigms 4. Graphs 5. Advanced topics 6. Domain specific
problems

5. Generales Goals

• That the student uses techniques of data structures and complex algorithms..

• That the student apply the concepts learned for the application on a real problem.

• That the student investigate the possibility of creating a new algorithm and / or new technique to solve a real
problem.

6. Contribution to Outcomes
This discipline contributes to the achievement of the following outcomes:

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to
identify solutions. (Usage)

6) Apply computer science theory and software development fundamentals to produce computing-based solutions.
(Usage)

1



7. Content

UNIT 1: Introduction (20)
Competences:
Content Generales Goals

• Introduction to Competetive Programming

• Computacional model

• Runtime and space complexity

• Recurrence and recursion

• Divide and conquer

• Identify and learn how to use the resources in
the Random Access Machine (RAM) computacional
model. [Usage]

• Compute the runtime and space complexity for writ-
ten algorithms. [Usage]

• Compute the recurrence relations for recursive algo-
rithms. [Usage]

• Solve problems related to searching and sorting. [Us-
age]

• Learning to select the right algorithms for divide-
and-conquer problems. [Usage]

• Design new algorithms for real-world problem solv-
ing.[Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

UNIT 2: Data structure (20)
Competences:
Content Generales Goals

• Arrays and strings problems

• Linked lists problems

• Stacks and queues problems

• Trees problems

• Hash tables problems

• Heaps problems

• Recognize different data structures, their complexi-
ties, uses and restrictions.[Usage]

• Identify the type of data structure appropriate to the
resolution of the problem. [Usage]

• Recognize types of problems associated with opera-
tions on data structures such as searching, inserting,
deleting and updating.[Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

UNIT 3: Algorithmic Design Paradigms (20)
Competences:
Content Generales Goals

• Brute force

• Divide and conquer

• Backtracking

• Greedy

• Dynamic Programming

• Learning the different algorithhmic design
paradigms.[Usage]

• Learning to select the right algorithms for differ-
ent problems applying different algorithhmic design
paradigms.[Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

2



UNIT 4: Graphs (20)
Competences:
Content Generales Goals

• Graphs transversal

• Graphs aplications

• Shortest path

• Networks and flows

• Identify problems classified as graph problems. [Us-
age]

• Learn how to select the right algorithms for network
problems (transversal, MST, shortest-path, network
and flows). [Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

UNIT 5: Advanced topics (20)
Competences:
Content Generales Goals

• Number theory

• Probabilities and combinations

• String algorithms (tries, string hashing, z-algorithm)

• Geometric algorithms

• Learning to select the right algorithms for problems
in number theory and mathematics as they are im-
portant in competitive programming. [Usage]

• Learning to select the right algorithms for problems
about probabilities and combinations, strings and
computational geometry. [Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

UNIT 6: Domain specific problems (20)
Competences:
Content Generales Goals

• Latency and throughput

• Parallelism

• Networks

• Storage

• High availability

• Caching

• Proxies

• Load balancers

• Key-value stores

• Replicating and sharing

• Leader election

• Rate limiting

• Logging and monitoring

• Learning to design systems for different domain-
specific problems by applying knowledge about net-
works, distributed computing, high availability, stor-
age and system architecture.[Usage]

Readings: Cormen et al. (2009), Halim (2013), Kulikov (2019), Miguel A. Revilla (2003), Laaksonen (2017), Aziz,
Lee, and Prakash (2012)

3



8. Methodology

1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de
los alumnos.

2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.

3. El profesor y los alumnos realizarán prácticas

4. Los alumnos deberán asistir a clase habiendo léıdo lo que el profesor va a presentar. De esta manera se facilitará la
comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment

Continuous Assessment 1 : 20 %

Partial Exam : 30 %

Continuous Assessment 2 : 20 %

Final exam : 30 %

References

Aziz, A., T.H. Lee, and A. Prakash (2012). Elements of Programming Interviews: The Insiders’ Guide. ElementsOfPro-
grammingInterviews.com. isbn: 9781479274833.

Cormen, T. H. et al. (2009). Introduction to Algorithms. MIT Press.
Halim, Steven (2013). Competitive Programming. 3 rd. Lulu.
Kulikov, Alexander S. (2019). Learning Algorithms Through Programming and Puzzle Solving. Active Learning Technolo-

gies.
Laaksonen, Antti (2017). Guide to Competitive Programming: Learning and Improving Algorithms Through Contests.

Stringer.
Miguel A. Revilla, Steve Skiena (May 2003). Programming Challenges: The Programming Contest Training Manual.

Springer. isbn: 978-0387001630.

4


