
San Pablo Catholic University (UCSP)
Undergraduate Program in

Computer Science
SILABO

CS291. Software Engineering I (Mandatory)

2023-II
1. General information
1.1 School : Ciencia de la Computación
1.2 Course : CS291. Software Engineering I
1.3 Semester : 5to Semestre.
1.4 Prerrequisites :

• CS113. Computer Science II. (3rd Sem)

• CS271. Databases I. (4th Sem)

1.5 Type of course : Mandatory
1.6 Learning modality : Face to face
1.7 Horas : 2 HT; 4 HP;
1.8 Credits : 4
1.9 Plan : Plan Curricular 2016

2. Professors
Lecturer

• Gustavo Delgado Ugarte <ggdelgado@ucsp.edu.pe>
– MSc in Ingenieŕıa del Software, Escuela Universitaria de Ingenieŕıa Industrial, Informática y Sistemas - UTA,
Chile, 2009.

3. Course foundation
The aim of developing software, except for extremely simple applications, requires the execution of a well-defined devel-
opment process. Professionals in this area require a high degree of knowledge of the different models and development
process, so that they are able to choose the most suitable for each development project. On the other hand, the
development of medium and large-scale systems requires the use of pattern and component libraries and the mastery
of techniques related to component-based design

4. Summary

1. Requirements Engineering 2. Software Design 3. Software Construction

5. Generales Goals

• Provide the student with a theoretical and practical framework for the development of software under quality
standards.

• Familiarize the student with the software modeling and construction processes through the use of CASE tools.

• Students should be able to select architectures and ad-hoc technology platforms for deployment scenarios

• Applying component-based modeling to ensure variables such as quality, cost, and time-to-market in development
processes.

• Provide students with best practices for software verification and validation.

1



6. Contribution to Outcomes
This discipline contributes to the achievement of the following outcomes:

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to
identify solutions. (Usage)

2) Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the
context of the program’s discipline. (Usage)

3) Communicate effectively in a variety of professional contexts. (Usage)

6) Apply computer science theory and software development fundamentals to produce computing-based solutions.
(Assessment)

7. Content

2



UNIT 1: Requirements Engineering (18)
Competences:
Content Generales Goals

• Describing functional requirements using, for exam-
ple, use cases or users stories

• Properties of requirements including consistency, va-
lidity, completeness, and feasibility

• Software requirements elicitation

• Describing system data using, for example, class di-
agrams or entity-relationship diagrams

• Non functional requirements and their relationship
to software quality

• Evaluation and use of requirements specifications

• Requirements analysis modeling techniques

• Acceptability of certainty / uncertainty considera-
tions regarding software / system behavior

• Prototyping

• Basic concepts of formal requirements specification

• Requirements specification

• Requirements validation

• Requirements tracing

• List the key components of a use case or similar de-
scription of some behavior that is required for a sys-
tem [Assessment]

• Describe how the requirements engineering process
supports the elicitation and validation of behavioral
requirements [Assessment]

• Interpret a given requirements model for a simple
software system [Assessment]

• Describe the fundamental challenges of and common
techniques used for requirements elicitation [Assess-
ment]

• List the key components of a data model (eg, class
diagrams or ER diagrams) [Assessment]

• Identify both functional and non-functional require-
ments in a given requirements specification for a soft-
ware system [Assessment]

• Conduct a review of a set of software requirements
to determine the quality of the requirements with
respect to the characteristics of good requirements
[Assessment]

• Apply key elements and common methods for elici-
tation and analysis to produce a set of software re-
quirements for a medium-sized software system [As-
sessment]

• Compare the plan-driven and agile approaches to re-
quirements specification and validation and describe
the benefits and risks associated with each [Assess-
ment]

• Use a common, non-formal method to model and
specify the requirements for a medium-size software
system [Assessment]

• Translate into natural language a software require-
ments specification (eg, a software component con-
tract) written in a formal specification language [As-
sessment]

• Create a prototype of a software system to mitigate
risk in requirements [Assessment]

• Differentiate between forward and backward tracing
and explain their roles in the requirements validation
process [Assessment]

Readings: Eric Freeman and Sierra (2014), Hans-Erik Eriksson and Fado (2003)

3



UNIT 2: Software Design (18)
Competences:
Content Generales Goals

• System design principles: levels of abstraction (ar-
chitectural design and detailed design), separation
of concerns, information hiding, coupling and cohe-
sion , re-use of standard structures

• Design Paradigms such as structured design (top-
down functional decomposition), object-oriented
analysis and design, event driven design, component-
level design, data-structured centered, aspect ori-
ented, function oriented, service oriented

• Structural and behavioral models of software designs

• Design patterns

• Relationships between requirements and designs:
transformation of models, design of contracts, invari-
ants

• Software architecture concepts and standard archi-
tectures (e.g. client-server, n-layer, transform cen-
tered, pipes-and-filters)

• The use of component desing: component selec-
tion, design, adaptation and assembly of compo-
nents, component and patterns, components and ob-
jects (for example, building a GUI using a standar
widget set)

• Refactoring designs using design patterns

• Internal design qualities, and models for them: effi-
ciency and performance, redundacy and fault toler-
ance, traceability of requeriments

• Measurement and analysis of design quality

• Tradeoffs between different aspects of quality

• Application frameworks

• Middleware: the object-oriented paradigm within
middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems

• Principles of secure design and coding

– Principle of least privilege

– Principle of fail-safe defaults

– Principle of psychological acceptability

• Articulate design principles including separation of
concerns, information hiding, coupling and cohesion,
and encapsulation [Familiarity]

• Use a design paradigm to design a simple software
system, and explain how system design principles
have been applied in this design [Usage]

• Construct models of the design of a simple software
system that are appropriate for the paradigm used
to design it [Usage]

• Within the context of a single design paradigm, de-
scribe one or more design patterns that could be ap-
plicable to the design of a simple software system
[Familiarity]

• For a simple system suitable for a given scenario,
discuss and select an appropriate design paradigm
[Usage]

• Create appropriate models for the structure and be-
havior of software products from their requirements
specifications [Usage]

• Explain the relationships between the requirements
for a software product and its design, using appro-
priate models [Assessment]

• For the design of a simple software system within
the context of a single design paradigm, describe the
software architecture of that system [Familiarity]

• Given a high-level design, identify the software ar-
chitecture by differentiating among common soft-
ware architectures such as 3-tier, pipe-and-filter, and
client-server [Familiarity]

• Investigate the impact of software architectures se-
lection on the design of a simple system [Assessment]

• Apply simple examples of patterns in a software de-
sign [Usage]

• Describe a form of refactoring and discuss when it
may be applicable [Familiarity]

• Select suitable components for use in the design of a
software product [Usage]

• Explain how suitable components might need to be
adapted for use in the design of a software product
[Familiarity]

• Design a contract for a typical small software com-
ponent for use in a given system [Usage]

• Discuss and select appropriate software architecture
for a simple system suitable for a given scenario [Us-
age]

• Apply models for internal and external qualities in
designing software components to achieve an accept-
able tradeoff between conflicting quality aspects [Us-
age]

• Analyze a software design from the perspective of a
significant internal quality attribute [Assessment]

• Analyze a software design from the perspective of a
significant external quality attribute [Assessment]

• Explain the role of objects in middleware systems
and the relationship with components [Familiarity]

• Apply component-oriented approaches to the design
of a range of software, such as using components for
concurrency and transactions, for reliable commu-
nication services, for database interaction including
services for remote query and database management,
or for secure communication and access [Usage]

• Refactor an existing software implementation to im-
prove some aspect of its design [Usage]

• State and apply the principles of least privilege and
fail-safe defaults [Familiarity]

Readings: Eric Freeman and Sierra (2014), Hans-Erik Eriksson and Fado (2003)

4



UNIT 3: Software Construction (24)
Competences:
Content Generales Goals

• Coding practices: techniques, idioms/patterns,
mechanisms for building quality programs

– Defensive coding practices

– Secure coding practices

– Using exception handling mechanisms to make
programs more robust, fault-tolerant

• Coding standards

• Integration strategies

• Development context: “green field” vs. existing code
base

– Change impact analysis

– Change actualization

• Potential security problems in programs

– Buffer and other types of overflows

– Race conditions

– Improper initialization, including choice of priv-
ileges

– Checking input

– Assuming success and correctness

– Validating assumptions

• Describe techniques, coding idioms and mechanisms
for implementing designs to achieve desired proper-
ties such as reliability, efficiency, and robustness [As-
sessment]

• Build robust code using exception handling mecha-
nisms [Assessment]

• Describe secure coding and defensive coding prac-
tices [Assessment]

• Select and use a defined coding standard in a small
software project [Assessment]

• Compare and contrast integration strategies includ-
ing top-down, bottom-up, and sandwich integration
[Assessment]

• Describe the process of analyzing and implementing
changes to code base developed for a specific project
[Assessment]

• Describe the process of analyzing and implementing
changes to a large existing code base [Assessment]

• Rewrite a simple program to remove common vulner-
abilities, such as buffer overflows, integer overflows
and race conditions [Assessment]

• Write a software component that performs some non-
trivial task and is resilient to input and run-time
errors [Assessment]

Readings: Eric Freeman and Sierra (2014), Hans-Erik Eriksson and Fado (2003)

8. Methodology

1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de
los alumnos.

2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.

3. El profesor y los alumnos realizarán prácticas

4. Los alumnos deberán asistir a clase habiendo léıdo lo que el profesor va a presentar. De esta manera se facilitará la
comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment Theory Sessions:
The theory sessions are held in master classes with activities including active learning and roleplay to allow students to
internalize the concepts.

Practical Sessions:
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem
solving, problem solving, specific exercises and/or in application contexts.

Evaluation System:
The final grade is obtained through of:

5



CONTINUOUS ASSESMENT EVALUATIONS
Continuous assessment 1 : 20 %

Continuous assessment 2 : 20 %

Midterm Exam : 30 %

Final Exam : 30 %

40% 60%

Where:

Continuous Assessment: It includes group work, active participation in class, exercise test.

• Continuos assessment 1 (weeks 1 - 9)

• Continuos assesment 2 (weeks 10 - 17)

To pass the course you must obtain 11.5 or more in the final grade .

References

Eric Freeman Elisabeth Robson, Bert Bates and Kathy Sierra (July 2014). Head First Design Patterns. 2nd. O’Reilly
Media, Inc.

Hans-Erik Eriksson Magnus Penker, Brian Lyons and Davis Fado (Oct. 2003). UML 2 Toolkit. 2nd. Wiley.

6


