San Pablo Catholic University (UCSP) Undergraduate Program in Computer Science SILABO

CS1D2. Discrete Structures II (Mandatory)

1. General information

1.1 School : Ciencia de la Computación 1.2 Course : CS1D2. Discrete Structures II

1.3 Semester : 2^{do} Semestre.

1.4 Prerrequisites : CS1D1. Discrete Structures I. (1^{st} Sem)

1.5 Type of course: Mandatory1.6 Learning modality: Face to face1.7 Horas: 2 HT; 4 HP;

1.8 Credits : 4

1.9 Plan : Plan Curricular 2016

2. Professors

Lecturer

• Daniel Alexis Gutierrez Pachas <dgutierrezp@ucsp.edu.pe>

- PhD in en Ciencia de la Computación y Matemática Computacional , Universidad de Sao Paulo, Brasil, 2017.
- MSc in en Matemática, Universidad Federal De Juiz De Fora, Brasil, 2013.
- Luis Fernando Díaz Basurco <ldiaz@ucsp.edu.pe>
 - MSc in Matemática, Pontificia Universidad Católica del Perú, Perú, 1990.

3. Course foundation

In order to understand the advanced computational techniques, the students must have a strong knowledge of the Various discrete structures, structures that will be implemented and used in the laboratory in the programming language..

4. Summary

1. Digital Logic and Data Representation 2. Basics of Counting 3. Graphs and Trees

5. Generales Goals

- That the student is able to model computer science problems using graphs and trees related to data structures.
- That the student applies efficient travel strategies to be able to search data in an optimal way.
- That the student uses the various counting techniques to solve computational problems.

6. Contribution to Outcomes

This discipline contributes to the achievement of the following outcomes:

- 1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Familiarity)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Familiarity)

7. Content

UNIT 1: Digital Logic and Data Representation (10)		
Competences:		
Content	Generales Goals	
 Reticles: Types and properties. Boolean algebras. Boolean Functions and Expressions. Representation of Boolean Functions: Normal Disjunctive and Conjunctive Form. Logical gates. Circuit Minimization. Readings: Rosen 2007. Grimaldi (2003)	 Explain the importance of Boolean algebra as a unification of set theory and propositional logic [Assessment]. Explain the algebraic structures of reticulum and its types [Assessment]. Explain the relationship between the reticulum and the ordinate set and the wise use to show that a set is a reticulum [Assessment]. Explain the properties that satisfies a Boolean algebra [Assessment]. Demonstrate if a terna formed by a set and two internal operations is or not Boolean algebra [Assessment]. Find the canonical forms of a Boolean function [Assessment]. Represent a Boolean function as a Boolean circuit using logic gates [Assessment]. Minimize a Boolean function. [Assessment]. 	
Readings: Rosen2007, Grimaldi (2003)		

 Counting arguments Set cardinality and counting Sum and product rule Inclusion-exclusion principle Arithmetic and geometric progressions The pigeonhole principle Permutations and combinations Basic definitions Pascal's identity The binomial theorem Solving recurrence relations An example of a simple recurrence relation, such as Fibonacci numbers Basic modular arithmetic Perform computations involving modular arithmetic Apply counting arguments, including sum and product rules, inclusion sund and arithmetic, inclusion such as fibusion-exclusion principle and arithmetic/geometric progressions [Familiarity] Apply the pigeonhole principle in the context of formal proof [Familiarity] Compute permutations and combinations of a se and interpret the meaning in the context of the particular application [Familiarity] Map real-world applications to appropriate counting formalisms, such as determining the number of way to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways to determine certain hands in cards (eg, full house) [Familiarity] Solve a variety of basic recurrence relations [Familiarity] Analyze a problem to determine underlying recurrence relations [Familiarity] 	Competences:		
 Set cardinality and counting Sum and product rule Inclusion-exclusion principle Arithmetic and geometric progressions The pigeonhole principle Permutations and combinations Basic definitions Pascal's identity The binomial theorem Solving recurrence relations An example of a simple recurrence relation, such as Fibonacci numbers Other examples, showing a variety of solutions Basic modular arithmetic Apply the pigeonhole principle in the context of formal proof [Familiarity] Compute permutations and combinations of a se and interpret the meaning in the context of the paticular application [Familiarity] Map real-world applications to appropriate countir formalisms, such as determining the number of way to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways to determine certain hands in cards (eg, full house) [Familiarity] Solve a variety of basic recurrence relations [Familiarity] Analyze a problem to determine underlying recurrence relations [Familiarity] Perform computations involving modular arithmet 	Content	Generales Goals	
	 Set cardinality and counting Sum and product rule Inclusion-exclusion principle Arithmetic and geometric progressions The pigeonhole principle Permutations and combinations Basic definitions Pascal's identity The binomial theorem Solving recurrence relations An example of a simple recurrence relation, such as Fibonacci numbers Other examples, showing a variety of solutions 	uct rules, inclusion-exclusion principle and arithmetic/geometric progressions [Familiarity] • Apply the pigeonhole principle in the context of formal proof [Familiarity] • Compute permutations and combinations of a seand interpret the meaning in the context of the paticular application [Familiarity] • Map real-world applications to appropriate counting formalisms, such as determining the number of way to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways to determine certain hands in cards (eg, full house) [Familiarity] • Solve a variety of basic recurrence relations [Familiarity] • Analyze a problem to determine underlying recurrence relations [Familiarity] • Perform computations involving modular arithmetical properties of the prope	

 Trees Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests Graph isomorphism Explain how to construct a spanning tree of a graph [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] Determine if two graphs are isomorphic [Familiarity] Determine if two graphs are isomorphic [Familiarity] 	Competences:		
 Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests Graph isomorphism theory, and some of the properties and special cases of each type of graph/tree [Familiarity] Demonstrate different traversal methods for tree and graphs, including pre, post, and in-order traver sal of trees [Familiarity] Model a variety of real-world problems in compute science using appropriate forms of graphs and trees such as representing a network topology or the organization of a hierarchical file system [Familiarity] Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (structural induction), and counting [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] 	Content	Generales Goals	
	 Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests 	 theory, and some of the properties and special cases of each type of graph/tree [Familiarity] Demonstrate different traversal methods for trees and graphs, including pre, post, and in-order traversal of trees [Familiarity] Model a variety of real-world problems in compute science using appropriate forms of graphs and trees such as representing a network topology or the organization of a hierarchical file system [Familiarity] Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (structural induction), and counting [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] 	

8. Methodology

- 1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de los alumnos.
- 2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.
- 3. El profesor y los alumnos realizarán prácticas
- 4. Los alumnos deberán asistir a clase habiendo leído lo que el profesor va a presentar. De esta manera se facilitará la comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment

Continuous Assessment 1: 20 %

Partial Exam : 30~%

Continuous Assessment 2 : 20 %

Final exam : 30 %

References

Grimaldi, R. (1997). Matemáticas Discretas y Combinatoria. Addison Wesley Iberoamericana. Grimaldi, R. (2003). Discrete and Combinatorial Mathematics: An Applied Introduction. 5 ed. Pearson. Johnsonbaugh, Richard (1999). Matemáticas Discretas. Prentice Hall, México.