

Peruvian Computing Society (SPC)

School of Computer Science Sillabus 2021-I

1. COURSE

CS402. Capstone Project I (Mandatory)

2. GENERAL INFORMATION

2.1 Credits : 3

2.2 Theory Hours : 2 (Weekly)

2.3 Practice Hours : -

2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face

2.7 Prerrequisites : CS401. Methodology of Computation Research . (7th Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

This course aims to allow the student to carry out a study of the state of the art of a topic chosen by the student for his thesis.

5. GOALS

- That the student carries out an initial investigation in a specific subject realizing the study of the state of the art of the chosen subject.
- That the student shows mastery in the subject of the line of investigation chosen
- That the student choose a teacher who dominates the research chosen as an advisor.
- The deliverables of this course are:

Avance parcial: Solid bibliography and progress of a Technical Reporto.

Final: Technical Report with preliminary comparative experiments that demonstrate that the student already knows the existing techniques in the area of his project and choose a teacher who dominates the area of his project as an adviser of his project.

6. COMPETENCES

- a) An ability to apply knowledge of mathematics, science. (Usage)
- b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)
- c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. (Usage)
- d) An ability to function on multidisciplinary teams. (Usage)
- e) Understand correctly the professional, ethical, legal, security and social implications of the profession. (Usage)
- f) An ability to communicate effectively. (Usage)
- h) A recognition of the need for, and an ability to engage in life-long learning. (Usage)
- i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Usage)
- k) Apply the principles of development and design in the construction of software systems of variable complexity. (Usage)

- 1) Develop principles research in the area of computing with levels of international competitiveness. (Usage)
- p) Improve the conditions of society by putting technology at the service of the human being. (Assessment)

7. SPECIFIC COMPETENCES

- a29) Demonstrate math and computer skills in an integrated final project
- **b18)** Define requirements in an integrated fine project.
- c11) Design and implement integrated software.
- d1) Collaborative software development using code repositories and version management (e.g., Git, Bitbucket, SVN)
- d5) Develop software that is ready to be integrated with other components or pieces of software
- e1) Demonstrate a proper understanding of the ethical implications of the software you build.
- e2) Demonstrate a proper understanding of the safety implications of the software you build.
- e9) Promote an ethic that founds the professional skills that are formed during the career.
- f1) Clearly transmit technical proposals to audiences in other areas.
- **f2)** Transmit technical proposals in the area of computing in English.
- **f3)** Transmit technical proposals in English to audiences in other areas.
- g1) Develop solutions that solve an existing problem in our society.
- **g2)** Design efficient software solutions based on a correct understanding of the architecture of a computer or a group of them.
- h1) Develop research projects with levels of complexity appropriate for undergraduate study.
- **h2)** Demonstrate the ability to learn to learn autonomously.
- i2) Use programming languages and environments that allow the implementation and debugging of solutions.
- k10) Demonstrate mastery of the principles of quality software development in an integrated project
- 11) Demonstrate that you have developed research according to an undergraduate level.

8. TOPICS

2

)

Unit 1: Lifting the state of the art (60) Competences Expected: e,h,i,l	
Topics	Learning Outcomes
 Perform an in-depth study of the state of the art in a certain topic in the area of Computation. Writing technical articles in computing. 	 Make a bibliographical survey of the state of the art of the chosen subject (this probably means 1 or 2 chapters of theoretical framework in addition to the introduction that is chapter I of the thesis) [Usage] Writing a latex document in paper format with higher quality than Project I (master tables, figures, equations, indices, bibtex, cross references, citations, pstricks) [Usage] Try to make presentations using prosper [Usage] Show basic experiments [Usage] Choose an advisor who dominates the research area [Usage]
Readings: [IEE08], [Ass08], [Cit08]	<u> </u>

9. WORKPLAN

9.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

9.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

9.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM

****** EVALUATION MISSING *******

11. BASIC BIBLIOGRAPHY

- [Ass08] Association for Computing Machinery. *Digital Libray*. http://portal.acm.org/dl.cfm. Association for Computing Machinery, 2008.
- [Cit08] CiteSeer.IST. Scientific Literature Digital Libray. http://citeseer.ist.psu.edu. College of Information Sciences and Technology, Penn State University, 2008.
- [IEE08] IEEE-Computer Society. Digital Libray. http://www.computer.org/publications/dlib. IEEE-Computer Society, 2008.