

National University of Engineering (UNI)

School of Computer Science Sillabus 2023-I

1. COURSE

CS1D1. Discrete Structures I (Mandatory)

2. GENERAL INFORMATION 2.1 Course 2.2 Semester 2.3 Credits 2.4 Horas	:	CS1D1. Discrete Structures I 1 ^{er} Semestre. 4 2 HT; 4 HP;
2.5 Duration of the period	:	16 weeks
2.6 Type of course	:	Mandatory
2.7 Learning modality	:	Blended
2.8 Prerrequisites	:	None None

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

Discrete structures provide the theoretical foundations necessary for computation. These fundamentals are not only useful to develop computation from a theoretical point of view as it happens in the course of computational theory, but also is useful for the practice of computing; In particular in applications such as verification, cryptography, formal methods, etc.

5. GOALS

- Apply Properly concepts of finite mathematics (sets, relations, functions) to represent data of real problems.
- Model real situations described in natural language, using propositional logic and predicate logic.
- Determine the abstract properties of binary relations.
- Choose the most appropriate demonstration method to determine the veracity of a proposal and construct correct mathematical arguments.
- Interpret mathematical solutions to a problem and determine their reliability, advantages and disadvantages.
- Express the operation of a simple electronic circuit using Boolean algebra.

6. COMPETENCES

- 1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Assessment)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Assessment)

7. TOPICS

Competences Expected:		
Topics	Learning Outcomes	
 Sets Venn diagrams Union, intersection, complement Cartesian product Power sets Cardinality of finite sets Relations: Reflexivity, simmetry, transitivity Equivalence relations Partial order relations and sets Extremal elements of a partially ordered sets Functions Surjections, injections, bijections Inverses Composition 	 Explain with examples the basic terminology of functions, relations, and sets [Assessment] Perform the operations associated with sets, functions, and relations [Assessment] Relate practical examples to the appropriate set function, or relation model, and interpret the associated operations and terminology in context [Assessment] 	

Competences Expected:		
Topics	Learning Outcomes	
 Propositional logic Logical connectives Truth tables Normal forms (conjunctive and disjunctive) Validity of well-formed formula Propositional inference rules (concepts of modus ponens and modus tollens) Predicate logic Universal and existential quantification Limitations of propositional and predicate logic (e.g., expressiveness issues) 	 Convert logical statements from informal language to propositional and predicate logic expressions [Usage] Apply formal methods of symbolic propositional and predicate logic, such as calculating validity of formulae and computing normal forms [Usage] Use the rules of inference to construct proofs is propositional and predicate logic [Usage] Describe how symbolic logic can be used to mod real-life situations or applications, including those arising in computing contexts such as software ana ysis (eg, program correctness), database queries, an algorithms [Familiarity] Apply formal logic proofs and/or informal, but rigo ous, logical reasoning to real problems, such as predicting the behavior of software or solving problem such as puzzles [Usage] Describe the strengths and limitations of propositional and predicate logic [Usage] 	

Competences Expected:		
Topics	Learning Outcomes	
 Notions of implication, equivalence, converse, inverse, contrapositive, negation, and contradiction The structure of mathematical proofs Direct proofs Disproving by counterexample Proof by contradiction Induction over natural numbers Structural induction Weak and strong induction (i.e., First and Second Principle of Induction) Recursive mathematical definitions Well orderings 	 Identify the proof technique used in a given proof [Assessment] Outline the basic structure of each proof technique (direct proof, proof by contradiction, and induction described in this unit [Usage] Apply each of the proof techniques (direct proof proof by contradiction, and induction) correctly in the construction of a sound argument [Usage] Determine which type of proof is best for a give problem [Assessment] Explain the parallels between ideas of mathematication and/or structural induction to recursion and recursively defined structures [Familiarity] Explain the relationship between weak and stron induction and give examples of the appropriate us of each [Assessment] State the well-ordering principle and its relationship to mathematical induction [Familiarity] 	

Unit 4: Data Representation (10)			
Competences Expected:			
Topics	Learning Outcomes		
 Numerical representation: sign-magnitude, floating point. Representation of other objects: sets, relations, functions. 	 Explain numerical representations such as sign-magnitude and floating point. [Assessment]. Carry out arithmetic operations using different kinds of representations. [Assessment]. Explain the floating point standard IEEE-754 [Familiarity]. 		
Readings : [Rosen2007], [Gri03], [howToProve]			

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

******** EVALUATION MISSING *******

10. BASIC BIBLIOGRAPHY

- [Gri03] R. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction. 5 ed. Pearson, 2003.
- [Sch12] Edward R. Scheinerman. Mathematics: A Discrete Introduction. 3 ed. 2012.